I-XE SYSTEMATICS OF BRACHINITE-LIKE ULTRAMAFIC ACHONDRITE NORTHWEST AFRICA 5400.
O. Pravdivtseva, A. Meshik, C. M. Hohenberg and A. J. Irving.

1Physics Department, Laboratory for Space Sciences, Washington University in St. Louis, St. Louis MO 63130, USA E-mail: oa@physics.wustl.edu. 2Dept. of Earth & Space Sciences, University of Washington, Seattle, WA 98195, USA.

Introduction: The ungrouped brachinite-like achondrite NWA 5400 is a relatively oxidized, metal-bearing ultramafic stone with terrestrial O and Cr isotope composition [1-4]. A comprehensive petrographic, elemental and multi-isotopic study of NWA 5400 and paired NWA 5363 suggested that the mineral assemblage in these meteorites represents a restite after partial melting and extraction of a small amount of silicate from a fertile source rock within ~ 1.5 Myr of the start of the solar system [5]. U-Pb systematics suggested very early differentiation, consistent with evolution of some parent bodies of iron meteorites [6]. Mn-Cr systematics indicated that 53Mn fully decayed at the time of isotopic closure [7]. Here we report I-Xe data for mineral phases separated from NWA 5400.

Experimental: In situ laser analyses on a polished section of NWA 5400 indicated the presence of multiple 129Xe rich mineral phases potentially suited for I-Xe dating, consistent with previous results for the whole rock [8]. To prepare mineral separates the meteorite was gently crushed, sieved into grain sizes between 37 and 74 µm and magnetically separated using a Frantz Isodynamic Magnetic Separator at progressively higher current settings. Troilite grains were manually removed from separates after each run. The final fraction, non-magnetic at 1.8A, consisted of mixture of forsteritic olivine and apatite. Aliquots of all samples were saved for mineralogical studies. The resulting 8 samples and absolute age standard Shallowater were sealed under vacuum in quartz tubes and irradiated with thermal neutrons to convert 127I into 128Xe, receiving $\sim 2 \times 10^{19}$n/cm². Samples were wrapped in Pt, the xenon was extracted by stepwise heating in a low blank W-coil and analyzed by high-transmission mass spectrometry. Hot blanks were measured at temperatures ~ 100 °C higher than melting of Pt and were consistently atmospheric in composition.

Results: Two separates were analyzed so far. Olivine/apatite yielded an apparent high-temperature isochron corresponding to closure of I-Xe system 6.6 ± 0.5 Ma before Shallowater, and to an absolute age of 4568.9 ± 0.6 Ma (assuming a Shallowater age of 4562.3 ± 0.4 Ma [8]), within the Pb-Pb age of CAI (4568.2 ± 0.2 Ma [9]). This age may reflect the time of partial differentiation suggested by [5]. The I-Xe system in troilite closed \sim 8 Ma later. Contrary to what was observed for Mn-Cr, the I-Xe system apparently survived the NWA 5400 parent body processing in at least some mineral phases, although the exact iodine-carrier phase has yet to be identified.

Supported by NASA grant #NNX14A124G.