
Ti-44 AND V-49 IN SIC GRAINS OF TYPE X REVISITED. E. Zinner¹, F. Gyngard¹, and Y. Lin², ¹Laboratory of Space Sciences and the Physics Department, Washington University in St. Louis, One Brookings Dr., St. Louis, MO 63130, USA., ekz@wustl.edu, ²Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

Introduction: Presolar SiC grains of type X have large ²⁸Si excesses, indicative of an origin in Type II supernovae [e.g., 1, 2] since SNe produce Si with large ²⁸Si excesses in the innermost zones [e.g., 3]. A SN origin is confirmed by evidence for radiogenic ⁴⁴Ca from the decay of ⁴⁴Ti in some X grains [4, 5]. Many X grains also exhibit large ⁴⁹Ti excesses, which Hoppe and Besmehn [6] attributed to the decay of short-lived ⁴⁹V. ⁴⁴Ti and ⁴⁹V are both found in the ²⁸Si-rich Si/S zone [3]. Motivated by Ca and Ti isotopic measurements in X grains from the Qingzhen meteorite [7], we are revisiting 44 Ti and 49 V and ask whether there are differences between two sub-classes of X grains, X1 and X2. Type X1 grains have Si isotopic ratios that plot along a line of slope ~0.65 in a δ -value Si 3-isotope plot, whereas X2 grains plot below this line [8]. In our comparison of the X grain data we do not limit ourselves to the Qingzhen grains but consider all available X grain data [9].

Discussion: Figure 1 shows Si, Ti and V isotopic ratios in the inner zones of the $25M_{\odot}$ SN model by Rauscher et al. [3]. These are the zones that contain the short-lived nuclides ⁴⁴Ti and ⁴⁹V. Ratios of stable isotopes are normalized to their solar ratios. The ²⁸Si excesses in X grains require contributions from these zones. The C and N isotopic ratios in the grains, on the other hand, require material from the He/N and He/C zones. Here we try to explain the Si, Ti, and V isotopic ratios of X grains by mixing of material from these different zones.

First, we investigate whether ⁴⁹Ti excesses can be explained by the decay of ⁴⁹V. In Fig. 2a we show a plot of inferred ⁴⁹V/⁵¹V versus inferred ⁴⁴Ti/⁴⁸Ti ratios under the assumption that all ⁴⁹Ti excess originates

from ⁴⁹V decay and compare these ratios with theoretical predictions. The diamonds are the ratios for the layers between 2.05 and $3M_{\odot}$ interior mass of the $25M_{\odot}$ SN model of [3]. The lines show compositions for mixtures with C>O, required for SiC condensation, between various inner layers and a H/N-He/C mixture that gives ¹²C/¹³C=100. As can be seen, most of the grain data plot above compositions that can be obtained by the mixtures, indicating that not all the ⁴⁹Ti excesses in X grains are due to ⁴⁹V decay. As a matter of fact, the H/N-He/C mix we used for the mixing curves has a δ^{49} Ti/⁴⁸Ti value of 522‰ due to neutron capture in the He/C zone [3]. In Fig. 2b we plot the δ^{49} Ti/⁴⁸Ti values of X grains

In Fig. 2b we plot the $\delta^{49}\text{Ti}/^{48}\text{Ti}$ values of X grains against their inferred ⁴⁴Ti/⁴⁸Ti ratios together with mixing curves obtained in the same way as in Fig. 2a. The plot shows that the ⁴⁹Ti excesses of almost half of the grains can be accounted for by n-capture in the He/C zone and no contributions from ⁴⁹V decay are required. Our assumed He/N-He/C mix has $^{12}\text{C}/^{13}\text{C}=100$. However, many grains have larger ratios (numbers next to the data symbols in Fig. 2b), implying higher ⁴⁹Ti/⁴⁸Ti ratios because of a larger fraction of He/C material in the He/N-He/C mix. Thus it seems that most of the ⁴⁹Ti excesses can be explained by n-capture in the He/C zone and ⁴⁹V decay is needed only for a few grains.

In Fig. 2c and d we plot also ${}^{46}\text{Ti}/{}^{48}\text{Ti}$ ratios. Plot d contains more data points than plot c because ${}^{44}\text{Ti}/{}^{48}\text{Ti}$ data are limited. We note that several grains have large ${}^{46}\text{Ti}$ deficits and even ${}^{49}\text{Ti}$ deficits. ${}^{46}\text{Ti}$ deficits can be explained by admixture from the inner Si/S zone (Fig. 1), but ${}^{49}\text{Ti}$ deficits are more difficult to explain. From Figs. 2c and d it is apparent that any contributions from layers $\geq 2.4M_{\odot}$ in interior mass would result in a large ${}^{46}\text{Ti}$ excess, which is seen in only one grain. This indicates only small contributions from the outer Si/S and inner O/Si zone, a conclusions also reached from the lack of large ${}^{54}\text{Fe}$ excesses in X grains [10].

Fig. 3 shows that X2 grains have higher inferred ⁴⁴Ti/⁴⁸Ti ratios than X1 grains. Although a correlation between ⁴⁴Ti/⁴⁸Ti ratios and Si isotopic ratios is expected since the zones containing ⁴⁴Ti are rich in ²⁸Si, such a correlation is observed only for the ²⁹Si/²⁸Si ratio (Fig. 3a). In Fig. 3, we also show (only for C>O) curves obtained by mixing a He/N-He/C mix having ¹²C/¹³C=390, ¹⁴N/¹⁵N=100, δ^{29} Si/²⁸Si=800‰, and δ^{30} Si/²⁸Si=1,100‰ with material from different layers of the Ni, Si/S, and O/Si zones. Only the ratios in X1 grains can be reproduced in this way; most X2 grains plot above the mixing curves. Their ⁴⁴Ti/⁴⁸Ti ratios can be reached by mixing with the layer at 2.4M_☉ interior

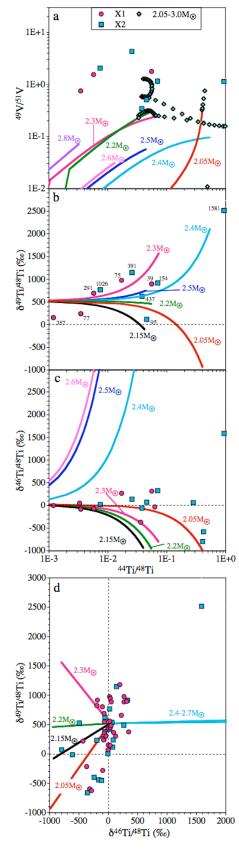
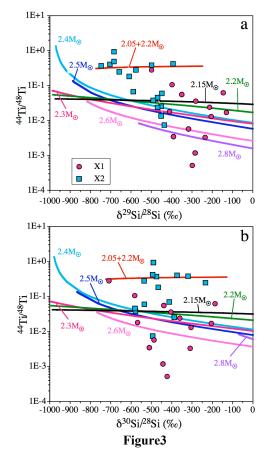



Figure 2

mass, where this ratio is highest (Fig. 1); however the corresponding Si isotopic ratios are much smaller than those in the grains. The layer at 2.05M_☉ interior mass does not have a ²⁸Si excess (Fig. 1) but has very little Si. Since it contains a lot of ⁴⁴Ti, we can achieve the high ⁴⁴Ti/⁴⁸Ti ratios and the Si isotopic ratios observed in most X2 grains by combining contributions from this layer and from ²⁸Si-rich layers in the Si/S zone. For example, the curves labeled "2.05+2.2M_☉" in Fig. 3 are obtained by mixing 10% from the $2.05M_{\odot}$ and 0.6 to 3% from the $2.2M_{\odot}$ layer with the remaining fraction from the He/N-He/C mixture previously described. This confirms the conclusion [2] that contributions from the Ni core are needed in order to account for the high 44Ti/48Ti ratios of some X grains, particularly those of type X2..

References: [1] Nittler L. R. et al. (1995) *Ap J* 453, L25-L28. [2] Hoppe P. et al. (1996) *Science* 272, 1314-1316. [3] Rauscher T. et al. (2002) *ApJ* 576, 323-348. [4] Nittler L. R. et al. (1996) *ApJ* 462, L31-L34. [5] Besmehn A. and Hoppe P. (2003) *GCA* 67, 4693-4703. [6] Hoppe P. and Besmehn A. (2002) *ApJ* 576, L69-L72. [7] Lin Y. et al. (2008) *LPS* XXXIX, Abstract #1529. [8] Lin Y. et al. (2002) *ApJ* 575, 257-263. [9] Hynes K. M. and Gyngard F. (2009) *LPS* XL, Abstract #1198. [10] Marhas K. K. et al. (2008) *ApJ* 689, 622-645.