INTRODUCTION: Presolar SiC grains of type X have large 3He excesses, indicative of an origin in Type II supernovae [e.g., 1, 2] since SNe produce Si with large 26Si excesses in the innermost zones [e.g., 3]. A SN origin is confirmed by evidence for radiogenic 44Ca from the decay of 44Ti in some X grains [4, 5]. Many X grains also exhibit large 49Ti excesses, which Hoppe and Besmehn [6] attributed to the decay of short-lived 49V. 44Ti and 48V are both found in the 28Si-rich Si/S zone [3]. Motivated by Ca and Ti isotopic measurements in X grains from the Qingzheng meteorite [7], we are revisiting 44Ti and 49V and ask whether there are differences between two sub-classes of X grains, X1 and X2. Type X1 grains have Si isotopic ratios that plot along a line of slope -0.65 in a δ-value Si 3-isotope plot, whereas X2 grains plot below this line [8]. In our comparison of the X grain data we do not limit ourselves to the Qingzheng grains but consider all available X grain data [9].

DISCUSSION: Figure 1 shows Si, Ti and V isotopic ratios in the inner zones of the 25M\odot SN model by Rauscher et al. [3]. These are the zones that contain the short-lived nuclides 44Ti and 49V. Ratios of stable isotopes are normalized to their solar ratios. The 26Si excesses in X grains require contributions from these zones. The C and N isotopic ratios in the grains, on the other hand, require material from the He/N and He/C zones. Here we try to explain the Si, Ti, and V isotopic ratios of X grains by mixing of material from these different zones.

First, we investigate whether 49Ti excesses can be explained by the decay of 49V. In Fig. 2a we show a plot of inferred 49V/51V versus inferred 44Ti/48Ti ratios under the assumption that all 49Ti excess originates from 49V decay and compare these ratios with theoretical predictions. The diamonds are the ratios for the layers between 2.05 and 3M\odot interior mass of the 25M\odot SN model of [3]. The lines show compositions for mixtures with C$>$O, required for SiC condensation, between various inner layers and a H/N-He/C mixture that gives 12C/13C=100. As can be seen, most of the grain data plot above compositions that can be obtained by the mixtures, indicating that not all the 49Ti excesses in X grains are due to 49V decay. As a matter of fact, the H/N-He/C mix we used for the mixing curves has a δ^{48}Ti/46Ti value of 522‰ due to neutron capture in the He/C zone [3].

In Fig. 2b we plot the δ^{48}Ti/46Ti values of X grains against their inferred 44Ti/48Ti ratios together with mixing curves obtained in the same way as in Fig. 2a. The plot shows that the 49Ti excesses of almost half of the grains can be accounted for by n-capture in the He/C zone and no contributions from 49V decay are required. Our assumed He/N-He/C mix has 12C/13C=100. However, many grains have larger ratios (numbers next to the data symbols in Fig. 2b), implying higher 48Ti/46Ti ratios because of a larger fraction of He/C material in the He/N-He/C mix. Thus it seems that most of the 49Ti excesses can be explained by n-capture in the He/C zone and 49V decay is needed only for a few grains.

In Fig. 2c and d we plot also 46Ti/48Ti ratios. Plot d contains more data points than plot c because 44Ti/48Ti data are limited. We note that several grains have large 46Ti deficits and even 49Ti deficits. 46Ti deficits can be explained by admixture from the inner Si/S zone (Fig. 1), but 49Ti deficits are more difficult to explain. From Figs. 2c and d it is apparent that any contributions from layers \geq2.4M\odot in interior mass would result in a large 46Ti excess, which is seen in only one grain. This indicates only small contributions from the outer Si/S and inner O/Si zone, a conclusions also reached from the lack of large 54Fe excesses in X grains [10].

Fig. 3 shows that X2 grains have higher inferred 44Ti/46Ti ratios than X1 grains. Although a correlation between 44Ti/46Ti ratios and Si isotopic ratios is expected since the zones containing 44Ti are rich in 26Si, such a correlation is observed only for the 26Si/28Si ratio (Fig. 3a). In Fig. 3, we also show (only for C$>$O) curves obtained by mixing a He/N-He/C mix having 12C/13C=390, 34N/35N=100, δ^{28}Si/29Si=800‰, and δ^{30}Si/28Si=1,100‰ with material from different layers of the Ni, Si/S, and O/Si zones. Only the ratios in X1 grains can be reproduced in this way; most X2 grains plot above the mixing curves. Their 44Ti/46Ti ratios can be reached by mixing with the layer at 2.4M\odot interior
mass, where this ratio is highest (Fig. 1); however the corresponding Si isotopic ratios are much smaller than those in the grains. The layer at 2.05M⊙ interior mass does not have a 28Si excess (Fig. 1) but has very little Si. Since it contains a lot of 44Ti, we can achieve the high 44Ti/48Ti ratios and the Si isotopic ratios observed in most X2 grains by combining contributions from this layer and from 28Si-rich layers in the Si/S zone. For example, the curves labeled “2.05+2.2M⊙” in Fig. 3 are obtained by mixing 10% from the 2.05M⊙ and 0.6 to 3% from the 2.2M⊙ layer with the remaining fraction from the He/N-He/C mixture previously described. This confirms the conclusion [2] that contributions from the Ni core are needed in order to account for the high 44Ti/48Ti ratios of some X grains, particularly those of type X2.