Content English

Title: Extreme 54Cr-rich oxide grains in meteorites: Evidence for a single late supernova injection into the Solar System

Abstract text: Systematic variations in 54Cr/52Cr ratios between different classes of meteorites point to large scale spatial and/or temporal isotopic heterogeneity in the solar protoplanetary disk. These variations have been attributed to nucleosynthetic effects, possibly carried by as-yet-unidentified presolar grains. We have recently identified extremely 54Cr-rich <200 nm oxide grains in the Orgueil meteorite, with estimated 54Cr/52Cr ratios (after correcting for dilution by neighboring material on the sample mount) reaching more than 50 times the solar system value. The most likely source of these grains is the 16O-rich O/Ne and/or O/C zones of Type II supernovae. When combined with the unusual distribution of O isotopic compositions of other supernova-derived oxide grains, the variability in bulk 54Cr/52Cr ratios between meteorite classes argues for a heterogeneous distribution of supernova grains, including the 54Cr carrier, injected directly into the solar protoplanetary disk from a single supernova.

Keywords: isotopic anomaly, meteorite, supernova, nucleosynthesis, presolar grains, chromium-54

Authors

Author(s): Nittler, L. 1, Qin, L. 2, Alexander, C. 1, Wang, J. 1, Stadermann, F. 3, Carlson, R. 1

Institutes:
[2] Lawrence Berkeley National Laboratory, Center for Isotope Geochemistry, Berkeley
[3] Washington University, Physics Dept., St. Louis
author: Nittler, Larry
Presenting author: Nittler, Larry
Submitting author: Nittler, Larry

print version: Close window Print page