ISOTOPIC ANALYSIS OF PRESOLAR GRAPHITE FROM THE MURCHISON KFB1 SEPARATE.
S. Amari, E. Zinner, and R. S. Lewis. Laboratory for Space Sciences and the Physics Department, Washington University, St. Louis, MO 63130, USA (sa@wuphys.wustl.edu), Enrico Fermi Institute and Chicago Center for Cosmochemistry, University of Chicago, Chicago, IL 60637, USA.

Introduction: Presolar graphite grains, the carrier of Ne-E(L), show a range of density (1.6 – 2.2 g/cm3) and their isotopic features depend on density [1-3]. Low-density graphite grains from the separate KE3 (1.65 – 1.72 g/cm3) extracted from Murchison [4] are characterized by 18O excesses, Si isotopic anomalies (mainly in the form of 28Si excesses), high inferred 26Al/27Al ratios (up to 0.1), as well as the initial presence of 44Ti (T$_{1/2}$ = 60 a) [5]. These features indicate that they formed in supernova ejecta. Of the other three graphite separates from Murchison, KFA1 (2.05 – 2.10 g/cm3) and KFB1 (2.10 – 2.15 g/cm3) also contain grains with 18O excesses, although the fraction of grains with such excesses is smaller than in KE3 [6, 7].

Amari et al. [8] have reported on a search for the initial presence of 60Fe in low-density graphite grains but could not confirm it. 22Ne in low-density graphite grains appears to be due to the decay of 22Na (T$_{1/2}$ = 2.6 a) synthesized in the O/Ne zone [9, 10]. One of the radioactive isotopes that are produced in this zone and are of interest with respect to the early solar system is 56Fe (T$_{1/2}$ = 1.49 Ma). Here we report on our continuing effort in the search for 60Fe in graphite grains.

Results and Discussion: We analyzed isotopic ratios of 15 grains from KFA1 with the NanoSIMS at Washington University. Ten grains have 12C/13C ratios between 74 and 90 (solar: 89). Only one grain has a 12C/13C ratio significantly higher (493) than the solar ratio. Two of the three 18O-rich grains exhibit low 12C/13C ratios (7.7 and 13.9). One grain with a low 12C/13C ratio (14.5) but a normal 18O/16O ratio shows anomalous Ti with a V-shape isotopic pattern when normalized to 48Ti and the solar ratios. The 50Ti/48Ti of the grain was not determined because of a huge 50Cr correction. Grains that belong to this population, characterized by low 12C/13C ratios (~ 10), are enigmatic: many of them show normal isotopic ratios in trace elements and it is not easy to decipher the stellar sources of these grains. In this study, two such grains, with 18O excesses, undoubtedly originated from supernovae. The grain with the Ti isotopic anomaly shows a signature of neutron capture. However, it is not clear whether it was produced in a supernova, an AGB star, or a yet unidentified stellar source. 57Fe/56Fe, 60Ni/59Ni and 62Ni/60Ni ratios of all 15 grains are normal within errors and we still have not obtained any evidence for the initial presence of 60Fe.