Ne-E(L) ACCOMPANIED BY 40K.
S. Amari. Laboratory for Space Sciences and the Physics Department, Washington University, St. Louis, MO 63130, USA. E-mail: sa@wuphys.wustl.edu.

Introduction: Presolar graphite carries Ne-E(L) [1], the component highly enriched in 22Ne. This huge excess prompted the idea that the 22Ne is from the decay of radiogenic 22Na (T$_{1/2}$ = 2.6 a) produced in novae [2]. Amari et al. [3] analyzed noble gases in the four graphite separates, KE1, KFA1, KFB1 and KFC1 with a range of density (1.6–2.2 g/cm3) extracted from the Murchison meteorite [4], and concluded that the 22Ne in KE1 and KFA1 (1.6–2.05 and 2.05-2.10 g/cm3) is mostly (≥ 90%) from the decay of 22Na. Low-density graphite grains (1.65–1.72 g/cm3) are characterized by 18O excesses, Si isotopic anomalies (mainly in the form of 28Si excesses) and high 26Al/27Al ratios (up to 0.1), indicating they formed in Type II supernovae [5]. From noble gas analyses of bulk samples [3] and of single grains [6] from the Murchison separates, Amari et al. [7] concluded that 22Ne in low-density grains is from 22Na produced in supernovae and is not from 22Ne that was directly implanted onto the grains. Sodium-22 is synthesized during hydrostatic burning by 21Ne(p,γ)22Na, where 21Ne is produced by 20Ne(n,α)21Ne and protons are produced by 12C(12C,p)23Na in the O/Ne zone [8].

Discussion: In the O/Ne zone, isotopes that have a similar first ionization potential as that of Na (5.203 eV) include K (4.34 eV). Potassium-40 (T$_{1/2}$ = 1.27 Ga) decays to 40Ar (11.16%) and 40Ca (88.84%). Predicted 22Na/40K ratios are 3.40 [9] and 9.77 [8] in the O/Ne zone of 25M$_\odot$ stars with the solar metallicity. If non-radiogenic 40Ca and 40Ar are not overwhelmingly abundant and 40K was incorporated along with 22Na, elevated 40Ca and 40Ar abundances are expected in 22Ne-rich low-density grains. In graphite bulk analysis, the lighter noble gases were released in lower temperature steps than the heavier noble gases (Fig 2 in [3]), indicating noble gases were released by diffusion. In the figure below (data are from [3]), where 22Ne, 40Ar, and s-process Kr concentrations are plotted against temperatures for KE1 and KFA1, the 40Ar release peaks are observed between the 22Ne and the Kr-S release peaks. A similar release pattern is also observed in KFB1 (2.10–2.15 g/cm3). Argon-40 must be from the graphite grains and is most likely from the decay of 40K.