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Introduction: Studies of presolar SiC grains
have shown that their elemental and isotopic
properties vary with grain size [1-3]. A wealth of
isotopic measurements of single grains has been
obtained with the ion microprobe [4]. However,
most analyses were made on grains larger than 1
um in diameter [e.g., 5, 6], which represent only
a small fraction of al grains. Furthermore, they
were made on SiC grains from Murchison,
which, on average, are larger than those from
other meteorites. A new type of ion microprobe,
the NanoSIMS, with its high spatial resolution,
high sensitivity, and multidetection capability
[7] allows isotopic analysis of much smaller
grains (down to 0.1um). We have made C and N
isotopic measurements on small presolar SiC
grains from the Murchison and Indarch chon-
drites and compare them with data on larger
Murchison grains.

Experimental: The measurements were
made in multidetection mode by counting sec-
ondary C~ and CN™ ions produced by Cs" bom-
bardment in four electron multipliers. A 5" de-
tector was used to count *Si” ions. Grains to be
analyzed were identified from a 20umx20um
raster image of secondary electrons and ions
produced by the Cs beam. For an isotopic meas-
urement, which lasted 60 sec, the primary beam
was deflected onto the grain and rastered over a
0.8umx0.8um area. We added 219 new analyses
to the 91 previously made [8] on SiC grains
from Murchison separate KJB (diameters 0.25-
0.45um) and measured 182 grains from the I n-
darch separate IH6 (diameters 0.25-0.65um).

Results and discussion: The results are
plotted in Fig. 1-3 and compared with previous
measurements on grains from Murchison sepa
rate KJG (diameters 1.8-3.7um) [5, 8]. There
exist some isotopic data on individual SiC grains
from Indarch [9, 10] but the data are too limited
to make a comparison meaningful. While we did
not detect any Si nitride among the Murchison
grains, a sizeable fraction of Indarch grains have
large Si/C ratios and 23 of them with *Si7*C>4
(Fig. 3) were classified as Si;N,.

The distributions of the C and N isotopic ra
tios do not vary much among the three grain

populationsin Fig. 1. The ranges of the C and N
ratios are quite similar as are the fractions of
different grain types. A+B grains (**C/*C<10):
7% for KJG, 6.5% for KJB, 5% for IH6. Y
grains (**C/**C>100): 6% for KJG, 6.5% for
KJB, 4% for IH6. The only noticeable difference
in the C isotopic distributions is the fraction of
grains with 10<™C/**C<40, which is 7% for
KJG, but 15% for KJB and 16% for IH6.

Another clear difference between large and
small grains is the range and distribution of N
concentrations (expressed by the measured
CN7/C ratios) and of the Si7/C" ratios (see Fig.
3). Si;N, grains have variable C contents and it
is no surprise that their CN7/C ratios are higher
than those of SIC grains. While Si;N, grains
have smaller anomalies than SiC grains (Fig. 1),
within the analytical errors (10 in Fig. 2) about
half of them have anomalous N ratios and most
have anomalous C isotopic ratios. It could be
that the anomalous ratios are due to small at-
tached SiC grains but in some cases we can rule
this out. For example, for grain A, the most
anomalous Si,N, grain (Fig. 2), the Si/C ratio
remained constant during the analysis and the
“N/®N and CN7/C ratios are so high that even if
a putative SiC grain had only N, the “N/°N
ratio of the Si,N, would still be anomalous. Si;N,
grains with isotopic signatures of X-grains, in-
dicative of a supernova origin, have been ob-
served before [11-13]. We conclude that there
exist also presolar Si;N, grains with the isotopic
signatures of mainstream SiC grains.
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